Механизмы исполнительные электрические однооборотные

МЭО-92, МЭО-92К, МЭО-92КБ Руководство по эксплуатации

Руководство по эксплуатации (далее - РЭ) предназначено для ознакомления потребителя с механизмами исполнительными электрическими однооборотными МЭО-630К, МЭО-1600К (далее - МЭО) постоянной скорости (далее - механизмы) Государственной системы промышленных приборов и средств автоматизации (ГСП) с целью обеспечения полного использования их технических возможностей.

РЭ распространяется на механизмы, указанные в таблице 1.

Во избежание поражения электрическим током при подготовке к эксплуатации, эксплуатации и обслуживании механизмов должны быть соблюдены меры безопасности, изложенные в разделе 2 «Использование по назначению».

К монтажу, управлению и обслуживанию механизмов должен допускаться только специально подготовленный персонал, изучивший настоящее руководство по эксплуатации, а также «Правила технической эксплуатации электроустановок потребителей» и получивший соответствующий инструктаж по технике безопасности.

В связи с систематически проводимыми работами по совершенствованию конструкции и технологии изготовления, возможны несущественные отличия между руководством по эксплуатации и поставляемыми механизмами, не влияющие на их технические характеристики, условия монтажа и эксплуатации.

1. ОПИСАНИЕ И РАБОТА ИЗДЕЛИЯ

1.1. Назначение изделия.

- 1.1.1. Механизмы предназначены для перемещения регулирующих органов в системах автоматического регулирования технологических процессов в соответствии с командными сигналами, поступающими от автоматических регулирующих и управляющих устройств и командами со щитов управления.
- 1.1.2. Механизмы МЭО устанавливаются отдельно от приводного устройства и соединяются с его регулирующим органом посредством соединительной тяги.
- 1.1.3. Рабочее положение механизмов любое, определяемое положением регулирующего органа трубопроводной арматуры или приводного устройства.

1.2. Технические характеристики

1.2.1. Исполнения механизмов и их основные технические данные приведены в таблице 1.

Таблица 1

Условное наименование механизма	Номинальный крутящий момент на выходном валу, Nm	Номинальное время полного хода выходного вала, s	Номинальный полный ход выходного вала, г	Потребляемая мощность в номинальном режиме, Вт, не более	Масса механизма, кг, не более	Тип двигателя
МЭО-250/10-0,25-92(К)(Б)	250	10	0,25	220		ML631-4
МЭО-250/25-0,63-92(К)(Б)	250	25	0,63	220		АИР56А4 – (К)
МЭО-630/10-0,25-92(К)(Б)		10	0,25	220		ML632-4
МЭО-630/25-0,63-92(К)(Б)		25	0,63	320	7.4	АИР56B4 — (K)
МЭО-630/25-0,25-92(К)(Б)		25	0,25		74	
МЭО-630/63-0,63-92(К)(Б)	620	63	0,63	220		ML631-4
МЭО-630/63-0,25-92(К)(Б)	630	63	0,25	220		АИР56А4 — (К)
МЭО-630/160-0,63-92(К)(Б)		160	0,63			
МЭО-630/10-0,25-92(К)(Б)		10	0,25	220	420	ML632-4
МЭО-630/25-0,63-92(К)(Б)		25	0,63	320	130	АИР56B4 — (K)
МЭО-1600/25-0,25-92(К)(Б)		25	0,25			
МЭО-1600/63-0,63-92(К)(Б)	1000	63	0,63			
МЭО-1600/63-0,25-92(К)(Б)	1600	63	0,25	220		ML631-4
МЭО-1600/160-0,63-92(К)(Б)		160	0,63	220		АИР56А4 — (К)

МЭО-2500/25-0,25-92К(Б)	2500	25	0,25	400	404	АИР63А4 – (К)
МЭО-2500/63-0,63-92К(Б)		63	0,63	400		
МЭО-2500/63-0,25-92К(Б)		63	0,25	000	134	=
МЭО-2500/160-0,63-92К(Б)		160	0,63	220		АИР56В4 – (К)

- 1.2.2. Общий вид, габаритные и присоединительные размеры механизмов приведены в приложении Б.
- 1.2.3. Электрическое питание двигателя механизмов:
- МЭО-630-92К, МЭО-1600-92К, МЭО-630-92КБ, МЭО-1600-92КБ осуществляется от трехфазной сети переменного тока с номинальным напряжением 380, 400 или 415 V частотой 50 Hz или 380 V частотой 60 Hz;
- МЭО-630-92 от однофазной сети переменного тока с номинальным напряжением 220V частотой 50 Hz.

Допускаемые отклонения параметров питающей сети переменного тока от номинального значения:

по напряжению - от минус 15 до плюс 10 %;

по частоте тока - от минус 2 до плюс 2 %.

При этом отклонения напряжения и частоты не должны быть противоположными. Коэффициент высших гармоник - до 5%.

- 1.2.4. Механизмы могут выпускаться с одним из нижеприведенных блоков сигнализации положения (далее БСП):
- токовым (далее ППТ-3-1M, ППТ-3-2M, ППТ-3-3M);
- реостатным (далее БСПР);
- индуктивным (далее БСПИ);
- блоком концевых выключателей (далее БКВ);

Механизмы с токовым блоком могут выпускаться с выносным или встроенным блоком питания.

- 1.2.5. В составе блоков БСП механизмов предусмотрены электрические ограничители перемещения выходного вала. Два микровыключателя используются в качестве электрических ограничителей в конечных положениях выходного вала (концевой выключатель открытия и концевой выключатель закрытия) и два используются для блокировки или для сигнализации промежуточных положений выходного вала (путевые выключатели).
- 1.2.6. Электрические ограничители должны обеспечивать настройку рабочего хода выходного вала на любом участке от 20 до 100% полного хода выходного вала.
- 1.2.7. Механизмы предназначены для эксплуатации в условиях воздействия климатических факторов внешней среды по ГОСТ 15150-69, со значениями параметров согласно таблице 4.

Таблица 4

Климатическое исполнение и категория размещения	Температура окружающей среды	Верхнее значение относительной влажности	Тип атмосферы при эксплуатации
У2*	от минус 40 до плюс 50°C	до 100 % с конденсацией влаги при температуре окружающей среды 25°C	I или II
T2	от минус 10 до	до 100 % с конденсацией влаги при температуре окружающей среды 35 °C	III
ТЗ	плюс 50°C	до 98 % без конденсации влаги при температуре окружающей среды 35 °C	или IV

^{*}Механизмы климатического исполнения У2 могут эксплуатироваться в условиях воздействия климатических факторов внешней среды, предназначенных для климатического исполнения У3.

Механизмы с категорией размещения «2» по ГОСТ 15150-69 предназначены для эксплуатации под навесом, исключающим прямое воздействие атмосферных осадков или в помещениях.

- 1.2.8. Механизмы устойчивы к воздействию атмосферного давления по группе исполнения Р1 ГОСТ Р 52931-2008.
- 1.2.9. Механизмы по защищенности от попадания внутрь твердых тел (пыли) и воды изготавливаются в двух вариантах по степени защиты IP54 и IP65 по ГОСТ 14254-96, что обеспечивает работу механизма при наличии в окружающей среде пыли и брызг воды.
- 1.2.10. Механизмы не предназначены для работы в средах, содержащих агрессивные пары, газы и вещества, вызывающие разрушение покрытий, изоляции и материалов, и во взрывоопасных средах.
- 1.2.11. Механизмы устойчивы и прочны к воздействию синусоидальных вибраций по группе исполнения VI ГОСТ Р 52931-2008.
- 1.2.12. Рабочее положение механизмов любое.
- 1.2.13. Режим работы механизмов повторно-кратковременный с частыми пусками S4 по ГОСТ Р 52776-2007 с продолжительностью включений (далее ПВ) до 25% и номинальной частотой включений до 320 в час при нагрузке на выходном валу в пределах от номинальной противодействующей до 0,5 номинального значения сопутствующей.

Механизмы должны допускать работу в повторно-кратковременном реверсивном режиме в течение одного часа с частотой включений до 630 в час при ПВ до 25%, со следующим повторением не менее чем через 3 часа.

- 1.2.14. При реверсировании электродвигателя интервал времени между выключением и включением на обратное направление должен быть не менее 50 ms.
- 1.2.15. Кратность пускового крутящего момента к номинальному при номинальном значении напряжении питания не мене 1,7.
- 1.2.16. Выбег выходного вала механизмов при сопутствующей нагрузке, равной 0,5 номинального значения и номинальном напряжении питания не более:
- -1 % полного хода выходного вала у механизмов с временем полного хода 10 s;
- 0,5 % полного хода выходного вала у механизмов со временем полного хода 25 s;
- 0,25 % полного хода выходного вала механизмов со временем полного хода 63 и 160s.
- 1.2.17. Люфт выходного вала механизмов не более $0,75^{\circ}$ при нагрузке, равной (5-6) % номинального значения.
- 1.2.18. Отклонение времени полного хода выходного вала механизмов от действительного значения не более $\pm 20\%$ при изменении напряжения питания в пределах от 85 до 110% номинального значения и 0.5 номинального значения сопутствующей нагрузки.
- 1.2.19. Механизмы обеспечивают фиксацию положения выходного вала при номинальной нагрузке и отсутствии напряжения питания.
- 1.2.20. Усилие на маховике или рукоятке ручного привода механизма при номинальной нагрузке не должно превышать 200 N.
- 1.2.21. Значение допускаемого уровня акустического шума, производимого механизмами, не должно превышать 80 dB(A) на расстоянии 1 m от корпуса по ГОСТ 12.1.003-83.
- 1.2.22. Средний срок службы механизмов не менее 15 лет.
- 1.2.23. Средняя наработка на отказ механизмов не менее 80000 часов.

Среднее время восстановления работоспособного состояния механизмов не более 7 часов.

- 1.2.24. Срок хранения механизма 1 год в законсервированном виде в упаковке завода-изготовителя в складских помещениях. По истечении срока хранения 1 год механизм подлежит обязательной переконсервации.
 - 1.2.25. Гарантийный срок эксплуатации механизмов:
- 18 месяцев для механизмов, поставляемых на внутренний рынок, с момента ввода их в эксплуатацию, но не более 30 месяцев с момента изготовления;
- 12 месяцев для механизмов, поставляемых на экспорт, с момента проследования их через границу государства предприятия-изготовителя.
 - 1.2.26. Механизмы относятся к ремонтопригодным, одноканальным, однофункциональным изделиям.
 - 1.2.27. Способы управления механизмами приведены в таблице 5.

Тип механизма	Управление механизмами	равление механизмами Тип пускателя	
	Контактное	Пускатель ПМЛ *	
МЭО-92К, МЭО-92КБ	Бесконтактное	Усилитель тиристорный пускатель реверсивный	ФЦ-0620 ПБР-ЗА
MЭO-92	Контактное	Пускатель ПМЛ *	
W13O-92	Бесконтактное	Усилитель тиристорный пускатель реверсивный	ФЦ-0610 ПБР-2М

1.3. Состав, устройство и работа механизмов

1.3.1. Механизмы состоят из следующих основных деталей и узлов (приложение Б): электропривода -1, редуктора -2, блока сигнализации положения (или блока концевых выключателей) -3, тормоза -4, ручного привода -5, штуцерного ввода -6, крышки -8, рычага -9, упоров -11.

Механизмы МЭО-92КБ имеют встроенный блок питания.

- 1.3.2. Принцип работы механизмов заключается в преобразовании электрического сигнала, поступающего от регулирующего или управляющего устройства во вращательное перемещение выходного вала.
- 1.3.3. Схемы электрические принципиальные и рекомендуемые схемы внешних соединений механизмов приведены в приложениях Г и Д.
- 1.3.4. Для ограничения величины выбега выходного вала и предотвращения перемещения его от усилия регулирующего органа при отсутствии напряжения на электродвигателе в механизмах предусмотрен механический тормоз. Устройство тормоза и его узлов приведены в приложении В. При работе электродвигателя шарики 11 отжимают тормозной диск 2 от фрикционного кольца 17 на величину «К». После выключения электродвигателя пружина возвращает тормозной диск 2 в исходное положение, то есть прижимает его к плоскости фрикционного кольца 17, обеспечивая торможение редуктора. Включать механизм на длительную работу допускается только с нагрузкой на выходном валу не менее чем 50% от номинального значения, т.к. без крутящего момента на валу тормоза шарики не отжимают диск 2, что приводит к нагреву и износу фрикционного кольца 17.

1.4. Описание и работа составных частей механизмов

1.4.1. Электропривод

Электропривод служит для передачи вращения через редуктор и создания требуемого крутящего момента на выходном валу механизма.

Электропривод включает в свой состав электрический асинхронный двигатель согласно таблице 1 (далее – электродвигатель), переходную плиту для соединения с корпусом редуктора и полумуфту, установленную на вал электродвигателя.

1.4.2. Редуктор

Редуктор является основным узлом механизма и служит для понижения частоты вращения и повышения крутящего момента, создаваемого электроприводом, до требуемого значения на выходном валу. В корпусе редуктора размещены многоступенчатая цилиндрическая передача, планетарная передача, ручной привод и тормоз.

1.4.3. Ручной привод

Ручной привод служит для перемещения выходного вала (регулирующего органа) при монтаже и настройке механизмов, а также в аварийных ситуациях (например, отсутствии напряжения питания). Перемещение выходного вала механизмов осуществляется вращением маховика или рукоятки ручного привода 5 (приложение Б).

Наличие планетарной передачи в редукторе механизмов позволяет использовать ручной привод независимо от включения или выключения двигателя.

1.4.4. Тормоз

Тормоз 4 (приложение Б) предназначен для ограничения величины выбега выходного вала и фиксации текущего углового положения выходного вала под нагрузкой при прекращении подачи напряжения питания электродвигателя.

Устройство тормоза механизмов приведено в приложении В.

При работе двигателя шарики 11 тормоза отжимают тормозной диск 2 от фрикционного кольца 17 (рисунок В.1) и происходит растормаживание редуктора. После выключения двигателя пружина 10 возвращает диск 2 в исходное положение, то есть прижимает его к плоскости фрикционного кольца 16, обеспечивая торможение редуктора.

Смещение диска 2 ограничено зазором K=0.2...0.4 mm, минимальное значение которого обеспечивает полное размыкание фрикционной связи и соответствует угловому люфту полумуфты 2 равному 28° .

ВНИМАНИЕ! ВО ИЗБЕЖАНИЕ БЫСТРОГО ИЗНОСА И НАГРЕВА ТОРМОЗНЫХ НАКЛАДОК ТОРМОЗА, НЕ ДОПУСКАЕТСЯ ВКЛЮЧАТЬ МЕХАНИЗМЫ НА ДЛИТЕЛЬНУЮ РАБОТУ С НАГРУЗКОЙ НА ВЫХОДНОМ ВАЛУ МЕНЕЕ 50 % ОТ НОМИНАЛЬНОГО ЗНАЧЕНИЯ.

1.4.5. Блок сигнализации положения

Блок сигнализации положения предназначен для преобразования положения выходного вала механизма в пропорциональный электрический сигнал и сигнализации его крайних и промежуточных положений.

В механизмах может быть установлен один из блоков, приведенных в приложении А.

Вращение выходного вала механизма передаётся непосредственно валу блока сигнализации положения.

Концевые выключатели используются для сигнализации положения выходного вала и остановки его в крайних положениях.

Путевые выключатели используются для сигнализации положения выходного вала в промежуточных положениях или дублирования концевых выключателей.

1.4.6. Упоры и ограничитель

Упоры 11 и ограничитель 9 (приложение Б) предназначены для механического ограничения положения регулирующего органа в случае его выхода за пределы рабочего диапазона: 0,25 г (90°) или 0,63 г (225°) из-за несрабатывания концевых выключателей. В механизмах МЭО роль ограничителя выполняет рычаг, имеющий для этого специальный выступ.

1.5. Маркировка

- 1.5.1. На табличке (рисунок 1), установленной на корпусе механизма нанесены:
- товарный знак или наименование предприятия-изготовителя;
- надпись «Зроблено в Україні» на украинском или английском языках или на языке, указанном в договоре на поставку;
- условное обозначение;
- номинальное напряжение питания, V;
- частота тока, Нz;
- степень защиты IP54;
- масса, kg;
- заводской номер механизма по системе нумерации предприятия-изготовителя;
- год изготовления.

2. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1. Эксплуатационные ограничения

- 2.1.1. Все работы по монтажу и ремонту механизмов производить при полностью снятом напряжении питания.
- 2.1.2. Безопасная эксплуатация механизмов обеспечивается правильной организацией осмотров и технического обслуживания.

При эксплуатации и техническом обслуживании механизмов необходимо соблюдать требования настоящего РЭ и нормативно-технической документации, регламентирующей правила эксплуатации электрооборудования.

2.2. Подготовка механизмов к использованию

2.2.1. При получении механизмов следует убедиться в полной сохранности тары. При наличии повреждений следует составить акт в установленном порядке и обратиться с рекламацией к транспортной организации.

Осмотреть механизм и убедиться в отсутствии внешних повреждений. Обратить внимание на наличие всех крепежных элементов, наличие средств уплотнения, заземляющих элементов.

Проверить комплектность поставки механизма в соответствии с паспортом.

Работы по расконсервации перед установкой привода на арматуру должны производиться в соответствии с требованиями ГОСТ 9.014-78.

Примечание - Для предотвращения образования конденсата, после транспортирования при отрицательных температурах, перед распаковыванием привод в упаковке рекомендуется выдержать 6 h при температуре от плюс 5 до плюс 25° C.

ВНИМАНИЕ! МАХОВИК РУЧНОГО ПРИВОДА НЕ ДОПУСКАЕТСЯ ИСПОЛЬЗОВАТЬ В ЦЕЛЯХ СТРОПОВКИ!

- 2.2.2. С помощью маховика или рукоятки ручного привода 5 (приложение Б) проверить легкость вращения выходного вала механизма, повернув его рукой на несколько оборотов от первоначального положения. Выходной вал должен вращаться плавно.
- 2.2.3. Заземлить механизм медным проводом сечением не менее 4 mm. Место присоединения заземляющего проводника [болт 12 (приложение Б)] предварительно тщательно зачистить и защитить от коррозии консервационной смазкой.
- 2.2.4. Проверить мегомметром сопротивление изоляции электрических цепей, значение которого должно быть не менее 20 МОм. Напряжение мегомметра прикладывать:
- 500V между соединенными вместе контактами блока сигнализации положения и соединенными вместе контактами электродвигателя;
- 500V между соединенными вместе контактами электродвигателя и корпусом;
- 250V между соединенными вместе контактами блока сигнализации положения корпусом.

Подать трехфазное напряжение питания на клеммы двигателя U1, VI, W1 (приложение Γ), при этом выходной вал должен прийти в движение. Поменять местами фазы питания, подключенные к клеммам VI и W1, при этом выходной вал должен прийти в движение в обратную сторону.

2.3. Использование механизмов

2.3.1. Эксплуатацию механизмов разрешается проводить персоналу, имеющему допуск к эксплуатации электроустановок напряжением до 1000 V и ознакомленному с настоящим РЭ, руководством по эксплуатации блока сигнализации положения и руководством по эксплуатации двигателя.

Перед установкой механизма необходимо соблюдать следующие МЕРЫ БЕЗОПАСНОСТИ:

- все работы с механизмом производить при полностью снятом напряжении питания;
- на щите управления необходимо установить табличку с надписью "Не включать -работают люди";
- корпус механизма должен быть заземлен;

2.4. Порядок монтажа механизмов

- 2.4.1. При монтаже механизмов необходимо предусмотреть возможность свободного доступа к блоку сигнализации положения, ручному приводу, двигателю для технического обслуживания.
- 2.4.2. Порядок монтажа механизмов МЭО:
- а) установить механизм на фундамент или промежуточную конструкцию, и закрепить соответствующим крепежом;
- б) снять упоры 11;
- в) поворачивая рукояткой ручного привода 5, установить рычаг 9 (рисунки Б.1, Б.3) в положение, соответствующее положению ЗАКРЫТО регулирующего органа;
- г) установить один упор;

- д) соединить рычаг механизма с регулирующим органом при помощи тяги. Отрегулировать длину тяги, перемещая рычаг механизма маховиком ручного привода в диапазоне рабочего угла поворота выходного вала;
- е) поворачивая рукоятку ручного привода 5, установить рычаг в положение, соответствующее положению ОТКРЫТО регулирующего органа;
- ж) установить второй упор;

2.5. Электрическое подключение

- 2.5.1. Механизмы выпускаются с штепсельным разъёмом РП10-30. Подключение внешних электрических цепей производить через штуцерный ввод 6 (приложение Б), согласно схемам электрическим принципиальным (приложение Γ). Монтаж сигнальных цепей рекомендуется вести многожильным гибким проводом сечением 0,35 0,5 mm², силовых 1-1,5 mm².
- 2.5.2. Пайку монтажных проводов цепей внешних соединений к контактам розетки штепсельного разъема РП10-30 производить оловянно-свинцовым припоем с применением бескислотных флюсов. После пайки необходимо удалить флюс промыванием мест паек спиртом. Места паек покрыть бакелитовым лаком или эмалью и изолировать электроизоляционными трубкам. Установить розетку на место и закрепить винтами. Уплотнить кабель, затянув гайки штуцерных вводов.
- 2.5.3. Сигнальные провода, идущие от блока сигнализации положения, должны быть пространственно разделены от силовых цепей. Аналоговые и интерфейсные цепи должны быть экранированы. Сопротивление каждого провода линии связи между механизмом и блоком питания блока сигнализации должно быть не более 12 Ом.

2.6. Перечень возможных неисправностей и способы их устранения

2.6.1. Перечень возможных неисправностей механизмов, и способы их устранения приведены в таблице 8.

Таблица 8

Наименование неисправности, внешнее проявление и дополнительные признаки	Вероятная причина	Метод устранения	
Management	Нарушена электрическая цепь	Проверить цепь и устранить неисправность	
Механизм при включении не работает	Механизм стоит на упоре	Включить в обратную сторону	
pacoraci	Обрыв в обмотке двигателя		
Двигатель в нормальном режиме работы перегревается	Межвитковое замыкание обмотки или замыкание обмотки на корпус	Заменить двигатель	
1. Тормоз не обеспечивает фиксацию положения выходного вала при нагрузке и	Износ фрикционного кольца 17 (рисунок В.3)	Отрегулировать тормоз (см. 3.3.1) или заменить корпус 1 (рисунок В. 1)	
отсутствии напряжения питания 2. Увеличенный выбег выходного вала механизма	Попадание смазки на рабочую поверхность фрикционного кольца	Протереть рабочую поверхность фрикционного кольца и обезжирить спиртом	
При работе механизма происходит срабатывание концевых микровыключателей раньше или после прохождения крайних положений рабочего угла	Нарушена настройка блока датчика	Произвести настройку (см. руководство по эксплуатации блока сигнализации положения)	

При работе блока сигнализации положения выходной сигнал	Неисправность согласующего устройства блока сигнализации положения	Заменить блок сигнализации положения	
отсутствует или не изменяется при вращении кулачка	Нарушена цепь	Проверить цепь и устранить неисправность	
Не происходит срабатывание микровыключателя	См. руководство по эксплуатации блока сигнализации положения		
	Большой износ последних ступеней зубчатой передачи	Заменить зубчатые пары	
Увеличенный люфт выходного вала механизма	Люфт в шпонках рычага механизма или выходного колеса	Заменить шпонки	

3. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И ТЕКУЩИЙ РЕМОНТ

Во время технического обслуживания механизмов должны выполняться меры безопасности, приведенные в разделе 2 настоящего руководства по эксплуатации.

3.1. Механизмы должны подвергаться техническому обслуживанию в соответствии с принятой потребителем программой технического обслуживания с учетом работ, указанных в таблице 9.

Таблина 9

Вид технического обслуживания	Наименование работ	Рекомендуемая периодичность
Внешний осмотр	Проверка по 3.2	Устанавливается в зависимости от производственных условий, но не реже одного раза в месяц
Профилактический осмотр (при необходимости техническое обслуживание)	Проверка по 3.3*	Один раз в год
Планово-предупредительный ремонт	Проверка по 3.4*	При интенсивной работе - не реже одного раза в 6-8 лет, при неинтенсивной - через 10-12 лет.

^{*} Техническое обслуживание БСП производить в соответствии с его руководством по эксплуатации. Электродвигатель является неремонтопригодным изделием и не требует специального технического обслуживания.

3.2. При внешнем осмотре необходимо проверить:

- состояние наружных поверхностей механизмов, при необходимости очистить от грязи и пыли;
- целостность корпуса редуктора, электропривода, крышек, вводных устройств, отсутствие вмятин, коррозии и других повреждений;
- наличие всех крепящих деталей и их элементов. Проверить затяжку всех крепежных болтов и гаек. Болты и гайки должны быть равномерно затянуты;
- состояние заземления, при необходимости заземляющие болты затянуть и очистить от ржавчины, нанести консистентную смазку.
 - 3.3. При профилактическом осмотре выполнить работы по 3.2, а также отключить механизм от питающей сети, снять крышку 8 (приложение Б) механизма и:
- проверить надежность креплений блока сигнализации положения, произвести их очистку от пыли путем продувки сухим и чистым сжатым воздухом;

- проверить надежность подключения внешних жгутов к разъемам механизма.
- Проверить настройку блока сигнализации положения, при необходимости
- подрегулировать согласно его руководству по эксплуатации.
- Определить состояние тормоза 4 (приложение Б) по 3.3.1.
- Оценить состояние шпоночного соединения полумуфты на валу электропривода. Угловой люфт не допускается.
- Проверить уплотнение вводных кабелей, при легком подергивании они не должны выдергиваться или проворачиваться в кабельном вводе.
- Подключить механизм, проверить его работу по 2.2.2, при необходимости настроить по 2.4.

3.3.1. Проверка тормоза

Снять электропривод 1 и узел тормоза 4 (приложение Б), и, с помощью щупа замерить зазор К (приложение В).

Если зазор K > 1mm (соответствует угловому люфту полумуфты 2 меньше или равно 7°), то необходимо произвести регулировку тормоза согласно 3.3.2.

Примечание - на предприятии-изготовителе при настройке тормоза зазор К устанавливается равным (0,2...0,4) mm.

ВНИМАНИЕ! ПЕРЕД СНЯТИЕМ ТОРМОЗА 4 (ПРИЛОЖЕНИЕ Б) НЕОБХОДИМО ЗАФИКСИРОВАТЬ ВЫХОДНОЙ ВАЛ МЕХАНИЗМА ДЛЯ ИСКЛЮЧЕНИЯ САМОПРОИЗВОЛЬНОГО ВРАЩЕНИЯ ЕГО ИЛИ СНЯТЬ НАГРУЗКУ.

3.3.2. Регулировка тормоза

Для регулировки необходимо снять узел тормоза 4 (приложение Б). Разобрать до состояния, указанного на рисунке В.З в следующей последовательности:

- расконтрить гайку 4 от шайбы стопорной 5 (приложение В) и вывернуть;
- снять шестерню 7, втулку 8, подшипник 9, пружину 10.
- снять быстросъемную шайбу 12 и сухарь 13;
- расконтрить гайку 4 от шайбы стопорной 5 и вывернуть;
- снять вал 3 вместе с диском 2 и шариками 11, кольцами 14.
- замерить перепад поверхностей A и B корпуса 1 (рисунок В.3). Вывернуть винты 20 (установлены на продукт Локтайт 243), снять крышку 16, снять полумуфту 18 в сборе и переставляя прокладки 19 с правой стороны подшипника на левую, обеспечить перепад поверхностей A и B в пределах 0,1 mm.
- установить и закрепить крышку 16 в исходное положение. При сборке винты 20 ставить на продукт «Локтайт-243». Осевой люфт полумуфты 18 не допускается.

Перед сборкой тормозного узла поверхности Б диска тормозного 2 (рисунок В.1) и А кольца фрикционного обезжирить. Трущиеся части вала 3 и подшипников смазать тонким слоем смазки ЦИАТИМ -203.

Во избежание попадания смазки на диск 2 (рисунок В.1) и кольцо фрикционное 17 (рисунок В.3), шарики 11 не смазывать.

ВНИМАНИЕ! ШАЙБУ СТОПОРНУЮ 5 ИСПОЛЬЗОВАТЬ ИЗ КОМПЛЕКТА ЗАПАСНЫХ ЧАСТЕЙ. ПОВТОРНОЕ ЕЕ ИСПОЛЬЗОВАНИЕ НЕ ДОПУСКАЕТСЯ.

Сборку тормозного узла производить в обратной последовательности. Зазор K=0,2...0,4 mm обеспечить кольцами поз.14.

- 3.4. При планово-предупредительном ремонте:
 - механизм отсоединить от источника питания, снять с места установки и последующие работы производить в стационарных условиях службы ремонта;
 - разобрать механизм до состояния возможности удаления старой смазки в редукторе. Узлы и детали промыть в керосине и высушить;
 - при обнаружении деталей и узлов со значительными следами износа произвести их замену, предварительно заказав их на предприятии-изготовителе.

При сборке механизма обильно смазать смазкой ЦИАТИМ-203 (далее - смазка): трущиеся поверхности подвижных частей редуктора; трущиеся поверхности вала и подшипников тормоза (приложение B).

На остальные, расположенные внутри корпуса редуктора поверхности деталей, нанести тонкий слой смазки. Расход смазки на один механизм составляет приблизительно 500 g.

ВНИМАНИЕ! ПОПАДАНИЕ СМАЗКИ НА МИКРВЫКЛЮЧАТЕЛИ БЛОКА СИГНАЛИЗАЦИИ ПОЛОЖЕНИЯ, ДИСКА 2 И КОЛЬЦА ФРИКЦИОННОГО 17 ТОРМОЗА (ПРИЛОЖЕНИЕ В) НЕ ДОПУСКАЕТСЯ.

Собрать механизм в обратном порядке. При сборке редуктора обратить внимание на правильную установку регулировочных колец. Для обеспечения герметичности редуктора применить герметик термостойкий.

По окончании сборки механизма:

- настроить блок сигнализации положения согласно их руководствам по эксплуатации;
- проверить работу механизма по 2.2.2;
- произвести обкатку механизма в обе стороны на холостом ходу в течении 2ч в режиме работы ПВ 25%. Время непрерывной работы не более времени номинального хода механизма.
- 3.5. Текущий ремонт

В течение гарантийного срока не допускается производить любые действия, связанные с разборкой механизма, кроме указанных в 3.3, в противном случае действие гарантийных обязательств предприятия-изготовителя прекращается.

Во время гарантийного срока текущий ремонт (см. ГОСТ 18322-78) производит предприятиеизготовитель. По истечении гарантийного срока текущий ремонт проводится предприятиемизготовителем по отдельному договору или специализированными организациями.

При текущем ремонте выполнить работы по 3.4, выявить вышедшие из строя детали и узлы.

Признаками неисправности деталей механизма являются выкрашивание зубьев шестерен, задиры, сколы, трещины, явный износ рабочих поверхностей.

Заказать на предприятии-изготовителе вышедшие из строя узлы и детали. Произвести их замену.

4. Транспортирование и хранение

- 4.1. Условия транспортирования механизмов должны соответствовать условиям хранения "5" климатического исполнения У2 или "6" климатических исполнений Т2 по ГОСТ 15150-69, но при атмосферном давлении не ниже 35,6 кРа и температуре не ниже минус 50 °С или условиям хранения "3" по ГОСТ 15150-69 при морских перевозках в трюмах.
- 4.2. Время транспортирования не более 45 дней. Механизмы могут транспортироваться всеми видами крытого транспорта в соответствии с правилами перевозки грузов, действующими на каждом виде транспорта.
- 4.3. Транспортирование на самолетах должно осуществляться в герметизированных отапливаемых отсеках.
- 4.4. Во время погрузочно-разгрузочных работ и транспортирования, упакованные механизмы не должны подвергаться резким ударам и воздействию атмосферных осадков.
- 4.5. Способ укладки упакованных механизмов на транспортное средство должен исключать их самопроизвольное перемещение.
- 4.6. Хранение механизмов со всеми комплектующими изделиями должно производиться в заводской упаковке в условиях хранения "3" по ГОСТ 15150-69.
- 4.7. Срок хранения механизмов климатического исполнения У2 не более 1 года, климатического исполнения Т2 не более 3 лет со дня отгрузки.

При необходимости более длительного хранения должна производиться переконсервация механизмов по ГОСТ 9.014-78:

- по варианту защиты B3-1 без использования внутренней упаковки BУ-0 для механизмов климатического исполнения У2;
- по варианту защиты B3-10 и варианту упаковки BУ-5, помещением в чехол из полиэтиленовой пленки по ГОСТ 10354-82 вместе с силикагелем по ГОСТ 3956-76 для механизмов климатического исполнения T2.

5. Утилизация

Механизмы не представляют опасности для жизни, здоровья людей и окружающей среды и подлежат утилизации после окончания срока службы по технологии, принятой на предприятии, эксплуатирующей механизмы.

Приложение A (обязательное)

Условное обозначение механизмов Запись условного обозначения механизма

$$\frac{XXX}{1} - \frac{XXXX}{2} / \frac{XXX}{3} - \frac{0.XX}{4} \frac{X}{5} - \frac{XX}{6} \frac{X}{7} \frac{X}{8} \frac{XX}{9}$$

- 1. тип механизма: **МЭО**
- 2. номинальный крутящий момент на выходном валу, Nm.
- 3. номинальное время полного хода выходного вала, s.
- 4. номинальное значение полного хода выходного вала, г.
- 5. обозначение блока:

M - BKB

У – ППТ-3-1М, ППТ-3-2М, ППТ-3-3М

Р – БСПР-10

И – БСПИ-10

- 6. две последние цифры года разработки механизма
- 7. напряжение питания:

буква отсутствует – однофазное напряжение питания

К – трехфазное напряжение питание

- 8. **Б** встроенный блок питания
- 9. климатическое исполнение и категория размещения механизма по ГОСТ 15150-69
 - 1) По умолчанию 220V. Механизмы с напряжением питания 230V и 240V поставляются по специальному заказу.
 - 2) По умолчанию 380V. Механизмы с напряжением питания 400V и 415V поставляются по специальному заказу.

Пример записи обозначения при заказе механизма исполнительного электрического однооборотного с номинальным крутящим моментом на выходном валу 1600 Nm, с номинальным временем полного хода выходного вала 63 s, с номинальным значением полного хода выходного вала 0,25 оборота, с БСПИ-10, 1992 года разработки, с трехфазным напряжением питания, климатического исполнения У, категории размещения 2:

«Механизм МЭО-1600/63-0,25И-92К У2».

Пример записи обозначения механизма с номинальным крутящим моментом на выходном валу 630 Nm, с номинальным временем полного хода выходного вала 25 s, с номинальным значением полного хода выходного вала 0,25 оборота, с ППТ-3-2M, 1992 года разработки, с однофазным напряжением питания, встроенным блоком питания, климатического исполнения У, категории размещения 2 при заказе:

«Механизм МЭО-630/25-0,25У-92Б У2»

Приложение Б (обязательное)

Общий вид, габаритные и присоединительные размеры механизмов

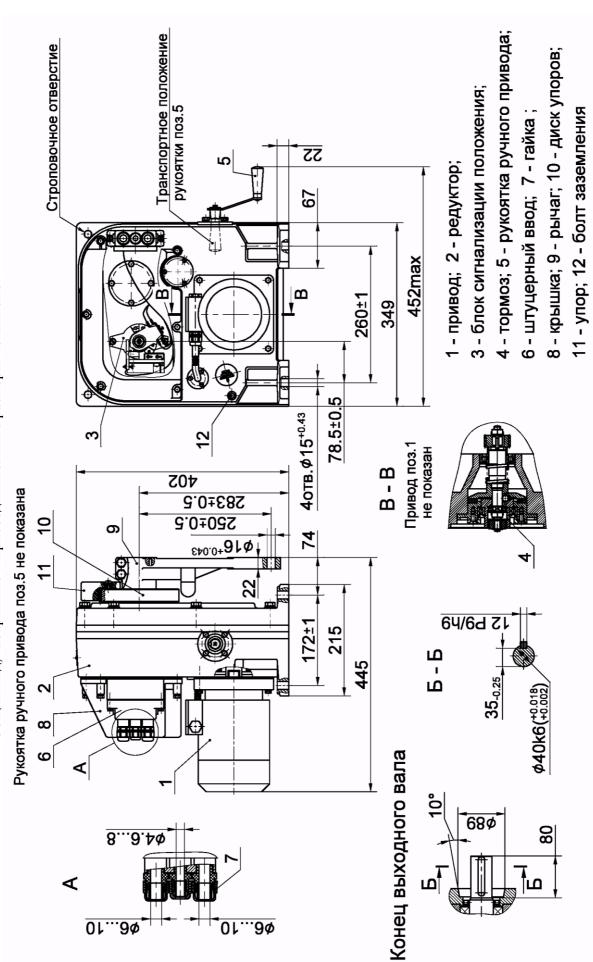


Рисунок Б.1 – Механизмы МЭО-630

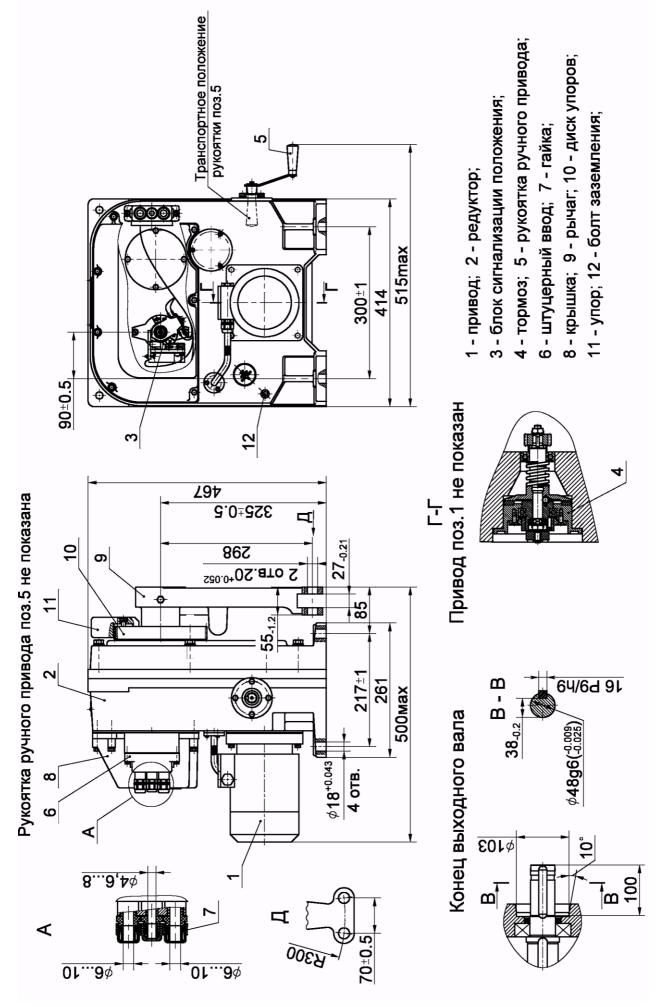


Рисунок Б.1 – Механизмы МЭО-1600 / МЭО-2500

Приложение В (обязательное) **Тормоз**

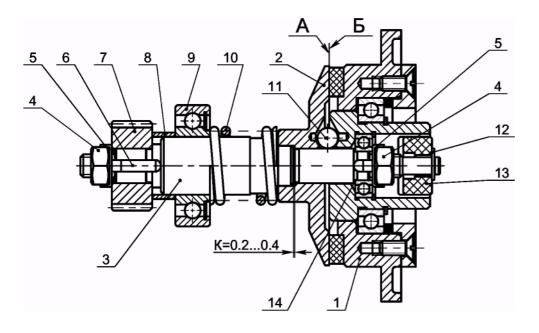


Рисунок В.1 - Тормоз

- 1- Корпус
- 2- Диск
- 3- Вал
- 4- Гайка
- 5- Шайба стопорная
- 6- Шпонка
- 7- Шестерня
- 8- Втулка
- 9- Подшипник
- 10- Пружина
- 11- Шарик
- 12- Шайба быстросъемная
- 13- Сухарь
- 14- Кольца

регулировочные.

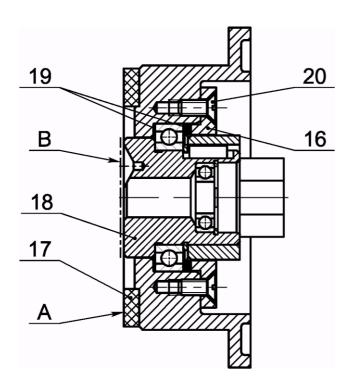
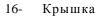



Рисунок В.2 - Корпус

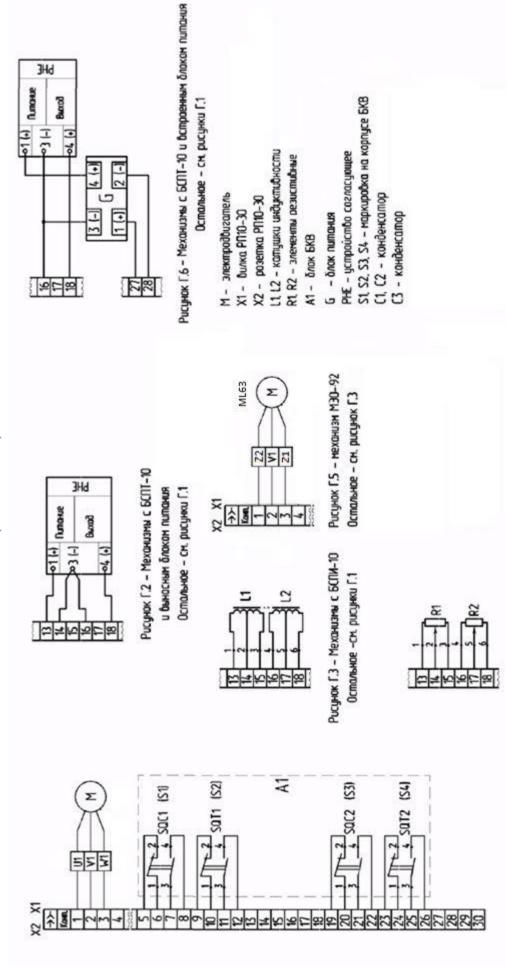
17- Кольцо фрикционное

18- Полумуфта

19- Прокладка

20- Винт

Приложение Г (обязательное)


3Hd

Becod

(*) 70

Лионие

(+) [+) 3.

Рисунак Г.4 - механизмы с БОПР-10

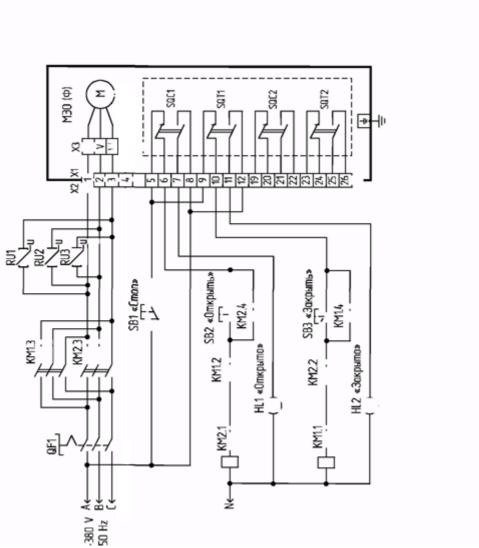

SQC1, SQT1, SQC2, SQT2 - никробых початели.

Рисунок Г.1 – неханизны с БКВ

Остальное – сн. рисунки Г.1

Приложение Д (обязательное)

Рекомендуемые схемы подключения механизмов

30KDPIMO6 Положение регулирующего органа Диаграмма работы микровыключателей или реле **DDOMEXUMO4HOE** apmamupu ошкрышов Микровыклю- Контакты чатели или X1 или X2 19, 20 21, 22 25. 26 23, 24 9, 10 11, 12 5, 6 7.8 peve **SQT2** 200 S0T1

контакт замкнутконтакт разомкнут

SQC1 – концевой выключатель открытия SQT1 – концевой выключатель закрытия

SQC2 – путевой выключатель открытия SQT2 – путевой выключатель закрытия

КМ1, КМ2 – пускатели электромагнитные ПМЛ;

НL1, НL2 – лампы коммутаторные сигнальные СКЛ-220; RU1...RU3 – варисторы (защитная цепь на напряжение 820 V)*; SB1...SB3 – кнопки КМ1;

ОF1 — выключатель автоматический

*S14K510 EPCOS или аналогичные

Рисунок Д.1 – Схема контактного управления механизмом с БКВ

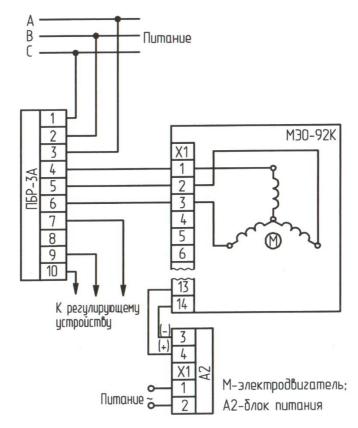


Рисунок Д.2 – Схема бесконтактного управления механизмом МЭО-92К

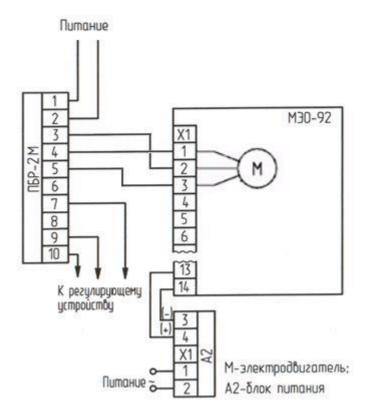


Рисунок Д.3 – Схема бесконтактного управления механизмом МЭО-92

